Novel Poly(L-lactide-co-ε-caprolactone) Matrices Obtained with the Use of Zr[Acac]4 as Nontoxic Initiator for Long-Term Release of Immunosuppressive Drugs
نویسندگان
چکیده
Slowly degradable copolymers of L-lactide and ε-caprolactone can provide long-term delivery and may be interesting as alternative release systems of cyclosporine A (CyA) and rapamycin (sirolimus), in which available dosage forms cause a lot of side effects. The aim of this study was to obtain slowly degradable matrices containing immunosuppressive drug from PLACL initiated by nontoxic Zr[Acac]₄. Three kinds of poly(L-lactide-co-ε-caprolactone) (PLACL) matrices with different copolymer chain microstructure were used to compare the release process of cyclosporine A and rapamycine. The influence of copolymer chain microstructure on drug release rate and profile was also analyzed. The determined parameters could be used to tailor drug release by synthesis of demanded polymeric drug carrier. The studied copolymers were characterized at the beginning and during the degradation process of the polymeric matrices by NMR spectroscopy, GPC (gel permeation chromatography), and DSC (differential scanning calorimetry). Different drug release profiles have been observed from each kind of copolymer. The correlation between drug release process and changes of copolymer microstructure during degradation process was noticed. It was determined that different copolymer composition (e.g., lower amount of caprolactone units) does not have to influence the drug release, but even small changes in copolymer randomness affect this process.
منابع مشابه
The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic Zirconium Initiator to In Vitro Biocompatibility
Because of the wide use of biodegradable materials in tissue engineering, it is necessary to obtain biocompatible polymers with different mechanical and physical properties as well as degradation ratio. Novel co- and terpolymers of various composition and chain microstructure have been developed and applied for cell culture. The aim of this study was to evaluate the adhesion and proliferation o...
متن کاملSynthesis and Characterization of Poly(L-lactide-co-ε-caprolactone) Copolymers: Effects of Stannous Octoate Initiator and Diethylene Glycol Coinitiator Concentrations
A series of approximately 50:50 mol % poly(L-lactide-co-ε-caprolactone) copolymers were synthesized by bulk copolymerization of L-lactide (LL) and ε-caprolactone (CL) using stannous octoate (Sn(Oct) 2 ) and diethylene glycol (DEG) as the initiating system. The resulting P(LL-co-CL) copolymers were characterized by various analytical techniques including dilute-solution viscometry, GPC, H/C NMR ...
متن کاملPreparation and Characterization of PCL-PEG-PCL Copolymeric Nanoparticles as Polymersomes for Delivery Hydrophilic Drugs
Background: A novel drug delivery system using poly (ε-caprolactone) - poly (ethylene glycol) -poly (ε-caprolactone) (PCL-PEG-PCL) was established in this study. Methods: Ceftriaxone (CTX) was encapsulated within PCL-PEG-PCL nanoparticles by a double emulsion technique (w/o/w), leading to creation of ceftriaxone-loaded PCL-PEG-PCL (CTX/PCL-PEG-PCL) polymersomes. The resulting polymersomes...
متن کاملSynthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone
In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...
متن کاملBranched and Crosslinked Resorbable Polymers Based on Lactic Acid, Lactide and Ε-caprolactone
Branched and crosslinked degradable polyesters based on lactic acid, lactide and εcaprolactone were prepared by utilizing different polymerization methods. Chain linking of hydroxyl telechelic lactic acid oligomers with 1,6-hexamethylene diisocyanate (HMDI) as a chain extender, yielded lactic acid based poly(ester-urethanes). When an excess of HMDI was used, polymers with broader molecular weig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013